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Introduction



Spaces of embeddings

• Fix 1 ≤ k ≤ d. Let M be a compact smooth d-dimensional manifold and
s : Sk−1 ↪→ ∂M a smooth embedding. Recall that this means that s is
injective, and at any x ∈ Sk−1 the derivative dsx is injective.

• We consider the space
Emb∂(Dk,M) := {K : Dk ↪→ M | K is a neat smooth embedding, K|∂Dk = s}

where neat means transverse to ∂M and K(Dk) ∩ ∂M = K(∂Dk) = s.

• For example, for k = 1,d = 3:

• Setting with a dual: If there exists G : Sd−k ↪→ ∂M, such that G has trivial
normal bundle and G ⋔ s = {pt}. Like in the example on the right!

We also assume Emb∂(Dk,M) is nonempty, and fix a basepoint U.
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In low dimensional topology...

... one studies codimension two embeddings, where “knotting” occurs.

• For example, (classical) knot theory studies the set of isotopy classes
π0 Emb∂(S1,R3). (This is in fact in bijection with π0 Emb∂(D1,D3).)

• More recently, intensively studied is the set of 2-knots π0 Emb∂(D2,M) for
a 4-manifold M. This can be huge – for example, “spinning” a classical
knot gives a 2-knot in π0 Emb∂(S2,R4) ∼= π0 Emb∂(D2,D4).

• A sample open problem: Is there a nontrivial 2-knot S2 ↪→ R4 which is
trivial locally flatly?

• In this talk: we shall compute π0 Emb∂(D2,M) in the setting with a dual!

• Although usually only the sets of components are considered, we will see
that higher homotopy groups of embedding spaces are also useful.
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Space Level Light Bulb Theorem



Space Level Light Bulb Theorem

Theorem [K-Teichner]
In the setting with a dual, if we denote MG := M ∪νG hd−k+1, then

there is an
explicit pair of homotopy equivalences

Emb∂(Dk,M) ΩEmbε∂(Dk−1,MG).
folεU
∼

ambU

- Here Embε∂(Dk−1,MG) with the boundary condition given by u0 := ∂u+, and Ω

denotes the space of loops based at u+ := s ∩ hd−k+1.

- Supscript ε means each embedded disk is equipped with a “push-off”(...).

Example: k = 1,d = 3
This recovers the classical LBT: isotopy classes of arcs in a 3-manifold M with
ends on two components of ∂M, one of which is S2, are in bijection with
π1(M ∪G h3). =⇒ a knot in the chord for a light bulb can be unknotted!
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Applications

Since codimension on the right hand side increased by one =⇒ easier!

k = 1 : Emb∂(D1,M) ≃ ΩSd−1 × Ω(M ∪G hd)

d = 2 : this is “point-pushing”: isotopy classes of arcs in a surface
M, with ends fixed on two components of ∂M, are in
bijection with Z⊕ π1(M ∪G h2).

k = 2 : Emb∂(D2,M) ≃ ΩEmbε∂(D1,M ∪G hd−1).

d = 4 : Emb∂ [D2,M] ∼= π1 Embε∂(D1,M ∪G h3).

k = 3 : π0 Emb∂(D3, S1 × D3) ∼= π1 Emb∂(D2,D4), cf. Budney–Gabai.

k = d : Recovers a theorem (and proof) of Cerf ’68:
Diff+

∂ (D
d) = Emb∂(Dd,Dd) ≃ ΩEmb∂(Dd−1,Dd).

In particular, π0 Diff+
∂ (D

4) ∼= π1(Emb∂(D3,D4);U). Open: is this nontrivial?
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Cerf’s trick: Proof of Space Level LBT

=

K : Dk ↪→ M, with ∂K = s J : Dk ↪→ MG := M∪νG hd−k+1, with ∂J = u− ∪u+

Can go back by removing a tubular neighbourhood of u+ in MG, and can show

Emb∂ε(Dk,M) ≃ Emb∂ε( Dk,MG).

Now consider the fibration sequence (due to Cerf):

Emb∂ε( Dk,MG) EmbDε
−
( Dk,MG) Embε∂ε(Dk−1,MG)

K 7→K|Dε+

The total space is contractible (shrink the half-disk to its uε−-collar), so:

ΩEmbε∂ε(Dk−1,MG) Emb∂ε( Dk,MG)
ambU

∼
folεU

where: ambU is the connecting map (use the family ambient isotopy theorem to extend loops),

folεU(K) is the loop of ε-augmented (k− 1)-disks foliating the sphere −U ∪ K.
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LBT for 2-disks in 4-manifolds



The 4D setting with a dual

Let M be an oriented compact smooth 4-manifold together with

• a knot s : S1 ↪→ ∂M,

• an embedded sphere G : S2 ↪→ ∂M,

so that s and G intersect transversely and positively in a single point. Recall
that we study the set of isotopy classes Emb∂ [D2,M] := π0 Emb∂(D2,M) of
neat smooth embeddings K : D2 ↪→ M which on ∂D2 agree with s.

By Space Level LBT we have Emb∂ [D2,M] := π1 Embε∂(D1,M ∪νG h3) and we can
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LBT for 2-disks

Theorem [K-Teichner] There is an exact sequence of sets

Z[π∖ 1]σ⧸dax(π3M) Emb∂ [D2,M] Map∂ [D
2,M] Z[π∖ 1]⧸⟨r− r⟩

+ fm(•)G j

Dax

µ2

In detail:

• Wall’s self-intersection invariant µ2 is surjective;

• a map f : D2 → M, ∂f = s, is homotopic to an embedding iff µ2(f) = 0;

• embeddings homotopic to K : D2 ↪→ M are obtained from K by the action
+ fm(r)G: do finger moves along r, and then Norman tricks;

• Dax(−, K) : j−1[K] → Z[π∖ 1]σ⧸dax(π3M) is the inverse of this action

⇐⇒ the relative Dax invariant, given by a clever count of double point loops in
a homotopy to K, detects the action:

Dax(K+ fm(r)G, K) = [r].
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Picture of LBT for 2-disks
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- A similar construction by Gabai (’21).

- We recover LBT for spheres of Gabai (’20) and Schneiderman–Teichner (’21).
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Thank you!
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