HIGHER HOMOTOPY GROUPS IN LOW DIMENSIONAL TOPOLOGY

Danica Kosanović (Paris 13),

joint with Peter Teichner (MPIM Bonn)

@ Young Topologists Meeting, July 09, 2021 Talk based on: https://arxiv.org/abs/2105.13032

1 Introduction

2 Space Level Light Bulb Theorem

Introduction

• Fix $1 \le k \le d$. Let M be a compact smooth d-dimensional manifold and $\mathbf{s} \colon \mathbb{S}^{k-1} \hookrightarrow \partial M$ a smooth embedding. Recall that this means that \mathbf{s} is *injective*, and at any $x \in \mathbb{S}^{k-1}$ the derivative $d\mathbf{s}_x$ is *injective*.

- Fix $1 \le k \le d$. Let M be a compact smooth d-dimensional manifold and $\mathbf{s} \colon \mathbb{S}^{k-1} \hookrightarrow \partial M$ a smooth embedding. Recall that this means that \mathbf{s} is *injective*, and at any $x \in \mathbb{S}^{k-1}$ the derivative $d\mathbf{s}_x$ is *injective*.
- We consider the space

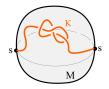
 $\mathsf{Emb}_{\partial}(\mathbb{D}^k, M) := \{ K \colon \mathbb{D}^k \hookrightarrow M \mid K \text{ is a neat smooth embedding}, K|_{\partial \mathbb{D}^k} = \mathbf{s} \}$

where neat means transverse to ∂M and $\mathcal{K}(\mathbb{D}^k) \cap \partial M = \mathcal{K}(\partial \mathbb{D}^k) = \mathbf{s}$.

- Fix $1 \le k \le d$. Let M be a compact smooth d-dimensional manifold and $\mathbf{s} \colon \mathbb{S}^{k-1} \hookrightarrow \partial M$ a smooth embedding. Recall that this means that \mathbf{s} is *injective*, and at any $x \in \mathbb{S}^{k-1}$ the derivative $d\mathbf{s}_x$ is *injective*.
- We consider the space

 $\mathsf{Emb}_{\partial}(\mathbb{D}^{k}, M) := \{K \colon \mathbb{D}^{k} \hookrightarrow M \mid K \text{ is a neat smooth embedding, } K|_{\partial \mathbb{D}^{k}} = \mathbf{s} \}$ where neat means transverse to ∂M and $K(\mathbb{D}^{k}) \cap \partial M = K(\partial \mathbb{D}^{k}) = \mathbf{s}.$

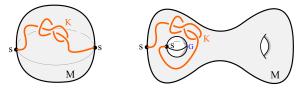
• For example, for k = 1, d = 3:



- Fix $1 \le k \le d$. Let M be a compact smooth d-dimensional manifold and $\mathbf{s} \colon \mathbb{S}^{k-1} \hookrightarrow \partial M$ a smooth embedding. Recall that this means that \mathbf{s} is *injective*, and at any $x \in \mathbb{S}^{k-1}$ the derivative $d\mathbf{s}_x$ is *injective*.
- We consider the space

 $\mathsf{Emb}_{\partial}(\mathbb{D}^{k}, M) := \{ K \colon \mathbb{D}^{k} \hookrightarrow M \mid K \text{ is a neat smooth embedding, } K|_{\partial \mathbb{D}^{k}} = \mathbf{s} \}$ where neat means transverse to ∂M and $K(\mathbb{D}^{k}) \cap \partial M = K(\partial \mathbb{D}^{k}) = \mathbf{s}.$

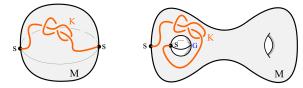
• For example, for k = 1, d = 3:



- Fix $1 \le k \le d$. Let M be a compact smooth d-dimensional manifold and $\mathbf{s} \colon \mathbb{S}^{k-1} \hookrightarrow \partial M$ a smooth embedding. Recall that this means that \mathbf{s} is *injective*, and at any $x \in \mathbb{S}^{k-1}$ the derivative $d\mathbf{s}_x$ is *injective*.
- We consider the space

 $\mathsf{Emb}_{\partial}(\mathbb{D}^{k}, M) := \{ K \colon \mathbb{D}^{k} \hookrightarrow M \mid K \text{ is a neat smooth embedding, } K|_{\partial \mathbb{D}^{k}} = \mathbf{s} \}$ where neat means transverse to ∂M and $K(\mathbb{D}^{k}) \cap \partial M = K(\partial \mathbb{D}^{k}) = \mathbf{s}.$

• For example, for k = 1, d = 3:

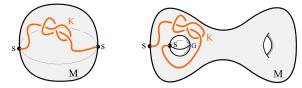


• Setting with a dual: If there exists $G: \mathbb{S}^{d-k} \hookrightarrow \partial M$, such that G has trivial normal bundle and $G \pitchfork s = \{pt\}$. Like in the example on the right!

- Fix $1 \le k \le d$. Let M be a compact smooth d-dimensional manifold and $\mathbf{s} \colon \mathbb{S}^{k-1} \hookrightarrow \partial M$ a smooth embedding. Recall that this means that \mathbf{s} is *injective*, and at any $x \in \mathbb{S}^{k-1}$ the derivative $d\mathbf{s}_x$ is *injective*.
- We consider the space

 $\mathsf{Emb}_{\partial}(\mathbb{D}^{k}, M) := \{ K \colon \mathbb{D}^{k} \hookrightarrow M \mid K \text{ is a neat smooth embedding, } K|_{\partial \mathbb{D}^{k}} = \mathbf{s} \}$ where neat means transverse to ∂M and $K(\mathbb{D}^{k}) \cap \partial M = K(\partial \mathbb{D}^{k}) = \mathbf{s}.$

• For example, for k = 1, d = 3:



• Setting with a dual: If there exists $G: \mathbb{S}^{d-k} \hookrightarrow \partial M$, such that G has trivial normal bundle and $G \pitchfork s = \{pt\}$. Like in the example on the right! We also assume $\text{Emb}_{\partial}(\mathbb{D}^k, M)$ is nonempty, and fix a basepoint U.

• For example, (classical) knot theory studies the set of isotopy classes $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^1, \mathbb{R}^3)$. (This is in fact in bijection with $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^1, \mathbb{D}^3)$.)

- For example, (classical) knot theory studies the set of isotopy classes $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^1, \mathbb{R}^3)$. (This is in fact in bijection with $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^1, \mathbb{D}^3)$.)
- More recently, intensively studied is the set of 2-knots $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)$ for a 4-manifold M. This can be huge – for example, "spinning" a classical knot gives a 2-knot in $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^2, \mathbb{R}^4) \cong \pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, \mathbb{D}^4)$.

- For example, (classical) knot theory studies the set of isotopy classes $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^1, \mathbb{R}^3)$. (This is in fact in bijection with $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^1, \mathbb{D}^3)$.)
- More recently, intensively studied is the set of 2-knots $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)$ for a 4-manifold M. This can be huge – for example, "spinning" a classical knot gives a 2-knot in $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^2, \mathbb{R}^4) \cong \pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, \mathbb{D}^4)$.
- \cdot A sample open problem: Is there a nontrivial 2-knot $\mathbb{S}^2 \hookrightarrow \mathbb{R}^4$ which is trivial locally flatly?

- For example, (classical) knot theory studies the set of isotopy classes $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^1, \mathbb{R}^3)$. (This is in fact in bijection with $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^1, \mathbb{D}^3)$.)
- More recently, intensively studied is the set of 2-knots $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)$ for a 4-manifold M. This can be huge – for example, "spinning" a classical knot gives a 2-knot in $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^2, \mathbb{R}^4) \cong \pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, \mathbb{D}^4)$.
- \cdot A sample open problem: Is there a nontrivial 2-knot $\mathbb{S}^2 \hookrightarrow \mathbb{R}^4$ which is trivial locally flatly?
- In this talk: we shall compute $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)$ in the setting with a dual!

- For example, (classical) knot theory studies the set of isotopy classes $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^1, \mathbb{R}^3)$. (This is in fact in bijection with $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^1, \mathbb{D}^3)$.)
- More recently, intensively studied is the set of 2-knots $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)$ for a 4-manifold M. This can be huge – for example, "spinning" a classical knot gives a 2-knot in $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^2, \mathbb{R}^4) \cong \pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, \mathbb{D}^4)$.
- \cdot A sample open problem: Is there a nontrivial 2-knot $\mathbb{S}^2 \hookrightarrow \mathbb{R}^4$ which is trivial locally flatly?
- In this talk: we shall compute $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)$ in the setting with a dual!
- Although usually only the sets of components are considered, we will see that higher homotopy groups of embedding spaces are also useful.

Space Level Light Bulb Theorem

Space Level Light Bulb Theorem

Theorem [K-Teichner]

In the setting with a dual, if we denote $M_G := M \cup_{\nu G} h^{d-k+1}$, then

Space Level Light Bulb Theorem

Theorem [K-Teichner]

In the setting with a dual, if we denote $M_G := M \cup_{\nu G} h^{d-k+1}$, then there is an explicit pair of homotopy equivalences

$$\mathsf{Emb}_{\partial}(\mathbb{D}^{k}, M) \xrightarrow[\mathfrak{dol}]{\mathfrak{fol}_{U}^{\varepsilon}} \Omega \, \mathsf{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{k-1}, M_{G}).$$

Theorem [K-Teichner]

In the setting with a dual, if we denote $M_G := M \cup_{\nu G} h^{d-k+1}$, then there is an explicit pair of homotopy equivalences

- Here $\mathsf{Emb}^{\varepsilon}_{\partial}(\mathbb{D}^{k-1}, M_G)$ with the boundary condition given by $u_0 := \partial u_+$, and Ω denotes the space of loops based at $u_+ := s \cap h^{d-k+1}$.

- Supscript ε means each embedded disk is equipped with a "push-off"(...).

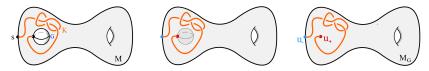
Theorem [K-Teichner]

In the setting with a dual, if we denote $M_G := M \cup_{\nu G} h^{d-k+1}$, then there is an explicit pair of homotopy equivalences

$$\mathsf{Emb}_{\partial}(\mathbb{D}^{k}, M) \xrightarrow[\mathfrak{amb}_{U}]{\mathfrak{fol}_{U}^{\varepsilon}} \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{k-1}, M_{G}).$$

- Here $\mathsf{Emb}^{\varepsilon}_{\partial}(\mathbb{D}^{k-1}, M_G)$ with the boundary condition given by $\mathbf{u}_0 := \partial \mathbf{u}_+$, and Ω denotes the space of loops based at $\mathbf{u}_+ := \mathbf{s} \cap \mathbf{h}^{d-k+1}$.

- Supscript ε means each embedded disk is equipped with a "push-off"(...).



Example: k = 1, d = 3

This recovers the classical LBT: isotopy classes of arcs in a 3-manifold M with ends on two components of ∂M , one of which is \mathbb{S}^2 , are in bijection with $\pi_1(M \cup_G h^3)$. \Longrightarrow a knot in the chord for a light bulb can be unknotted!

k = 1: $\operatorname{Emb}_{\partial}(\mathbb{D}^1, M) \simeq \Omega \mathbb{S}^{d-1} \times \Omega(M \cup_{G} h^d)$

$$\begin{split} k &= 1: \; \mathsf{Emb}_{\partial}(\mathbb{D}^{1}, M) \simeq \Omega \mathbb{S}^{d-1} \times \Omega(M \cup_{G} h^{d}) \\ d &= 2: \; \text{this is "point-pushing": isotopy classes of arcs in a surface} \\ & M, \text{ with ends fixed on two components of } \partial M, \text{ are in} \\ & \text{bijection with } \mathbb{Z} \oplus \pi_{1}(M \cup_{G} h^{2}). \end{split}$$

$$\begin{split} k &= 1: \; \mathsf{Emb}_{\partial}(\mathbb{D}^{1}, M) \simeq \Omega \mathbb{S}^{d-1} \times \Omega(M \cup_{G} h^{d}) \\ d &= 2: \; \text{this is "point-pushing": isotopy classes of arcs in a surface} \\ M, with ends fixed on two components of ∂M , are in bijection with $\mathbb{Z} \oplus \pi_{1}(M \cup_{G} h^{2}). \end{split}$$$

k = 2: $\operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_G h^{d-1}).$

$$\begin{split} k &= 1: \; \mathsf{Emb}_{\partial}(\mathbb{D}^1, M) \simeq \Omega \mathbb{S}^{d-1} \times \Omega(M \cup_G h^d) \\ d &= 2: \; \text{this is "point-pushing": isotopy classes of arcs in a surface} \\ M, with ends fixed on two components of ∂M , are in bijection with $\mathbb{Z} \oplus \pi_1(M \cup_G h^2). \end{split}$$$

$$k = 2: \operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_G h^{d-1}).$$
$$d = 4: \operatorname{Emb}_{\partial}[\mathbb{D}^2, M] \cong \pi_1 \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_G h^3).$$

$$\begin{split} k &= 1: \; \mathsf{Emb}_{\partial}(\mathbb{D}^{1}, M) \simeq \Omega \mathbb{S}^{d-1} \times \Omega(M \cup_{G} h^{d}) \\ d &= 2: \; \text{this is "point-pushing": isotopy classes of arcs in a surface} \\ & M, \text{ with ends fixed on two components of } \partial M, \text{ are in} \\ & \text{bijection with } \mathbb{Z} \oplus \pi_{1}(M \cup_{G} h^{2}). \end{split}$$

$$k = 2: \operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_G h^{d-1}).$$
$$d = 4: \operatorname{Emb}_{\partial}[\mathbb{D}^2, M] \cong \pi_1 \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_G h^3).$$

k = 3: $\pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^3, \mathbb{S}^1 \times \mathbb{D}^3) \cong \pi_1 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^2, \mathbb{D}^4)$, cf. Budney–Gabai.

$$\begin{split} k &= 1: \; \mathsf{Emb}_{\partial}(\mathbb{D}^{1}, M) \simeq \Omega \mathbb{S}^{d-1} \times \Omega(M \cup_{G} h^{d}) \\ d &= 2: \; \text{this is "point-pushing": isotopy classes of arcs in a surface} \\ & M, \text{ with ends fixed on two components of } \partial M, \text{ are in} \\ & \text{bijection with } \mathbb{Z} \oplus \pi_{1}(M \cup_{G} h^{2}). \end{split}$$

$$k = 2: \operatorname{Emb}_{\partial}(\mathbb{D}^{2}, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{1}, M \cup_{G} h^{d-1}).$$
$$d = 4: \operatorname{Emb}_{\partial}[\mathbb{D}^{2}, M] \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{1}, M \cup_{G} h^{3}).$$

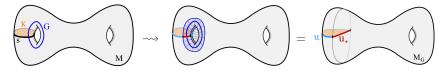
k = 3: $\pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^3, \mathbb{S}^1 \times \mathbb{D}^3) \cong \pi_1 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^2, \mathbb{D}^4)$, cf. Budney–Gabai.

k = d: Recovers a theorem (and proof) of Cerf '68:

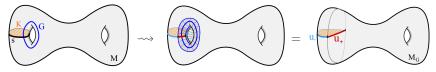
 $\operatorname{Diff}_{\partial}^{+}(\mathbb{D}^{d}) = \operatorname{Emb}_{\partial}(\mathbb{D}^{d}, \mathbb{D}^{d}) \simeq \Omega \operatorname{Emb}_{\partial}(\mathbb{D}^{d-1}, \mathbb{D}^{d}).$

In particular, $\pi_0 \operatorname{Diff}^+_{\partial}(\mathbb{D}^4) \cong \pi_1(\operatorname{Emb}_{\partial}(\mathbb{D}^3, \mathbb{D}^4); U)$. Open: is this nontrivial?

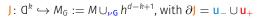
Cerf's trick



 $\mathsf{K} \colon \mathbb{D}^k \hookrightarrow \mathsf{M}, \text{ with } \partial \mathsf{K} = \mathsf{s} \qquad \qquad \mathsf{J} \colon \mathsf{C}^k \hookrightarrow \mathsf{M}_{\mathsf{G}} := \mathsf{M} \cup_{\nu \mathsf{G}} h^{d-k+1}, \text{ with } \partial \mathsf{J} = \mathsf{u}_- \cup \mathsf{u}_+$

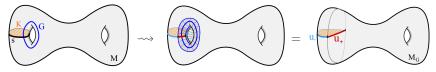


 $\mathsf{K} \colon \mathbb{D}^k \hookrightarrow \mathsf{M}$, with $\partial \mathsf{K} = \mathsf{s}$

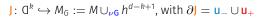


Can go back by removing a tubular neighbourhood of u_+ in M_G , and can show

 $\operatorname{Emb}_{\partial^{\varepsilon}}(\mathbb{D}^{\mathsf{k}}, M) \simeq \operatorname{Emb}_{\partial^{\varepsilon}}(\mathbb{Q}^{\mathsf{k}}, M_{G}).$



 $\mathsf{K} \colon \mathbb{D}^k \hookrightarrow \mathsf{M}$, with $\partial \mathsf{K} = \mathsf{s}$

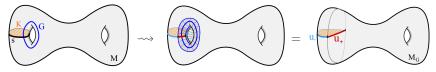


Can go back by removing a tubular neighbourhood of u_+ in M_G , and can show

$$\operatorname{Emb}_{\partial^{\varepsilon}}(\mathbb{D}^{k}, M) \simeq \operatorname{Emb}_{\partial^{\varepsilon}}(\mathbb{C}^{k}, M_{G}).$$

Now consider the fibration sequence (due to Cerf):

$$\mathsf{Emb}_{\partial^{\varepsilon}}(\underline{\mathsf{Q}}^{\mathsf{k}},M_{\mathsf{G}}) \longleftrightarrow \mathsf{Emb}_{\mathbb{D}_{-}^{\varepsilon}}(\underline{\mathsf{Q}}^{k},M_{\mathsf{G}}) \xrightarrow{\mathsf{K} \mapsto \mathsf{K}|_{\mathbb{D}_{+}^{\varepsilon}}} \mathsf{Emb}_{\partial^{\varepsilon}}^{\varepsilon}(\mathbb{D}^{\mathsf{k}-1},M_{\mathsf{G}})$$



 $\mathsf{K} \colon \mathbb{D}^k \hookrightarrow M, \text{ with } \partial \mathsf{K} = \mathsf{s} \qquad \mathsf{J}$

J:
$$\mathbb{Q}^k \hookrightarrow M_G := M \cup_{\nu G} h^{d-k+1}$$
, with $\partial J = \mathbf{u}_- \cup \mathbf{u}_+$

Can go back by removing a tubular neighbourhood of u_+ in M_G , and can show

$$\operatorname{Emb}_{\partial^{\varepsilon}}(\mathbb{D}^{k}, M) \simeq \operatorname{Emb}_{\partial^{\varepsilon}}(\mathbb{C}^{k}, M_{G}).$$

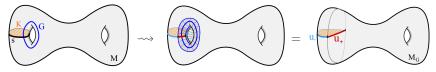
Now consider the fibration sequence (due to Cerf):

$$\mathsf{Emb}_{\partial^{\varepsilon}}(\underline{\mathsf{Q}}^{\mathsf{k}},\mathsf{M}_{\mathsf{G}}) \longleftrightarrow \mathsf{Emb}_{\mathbb{D}_{\varepsilon}^{\varepsilon}}(\underline{\mathsf{Q}}^{k},\mathsf{M}_{\mathsf{G}}) \xrightarrow{\mathsf{K} \mapsto \mathsf{K}|_{\mathbb{D}_{\varepsilon}^{\varepsilon}}} \mathsf{Emb}_{\partial^{\varepsilon}}^{\varepsilon}(\underline{\mathbb{D}}^{\mathsf{k-1}},\mathsf{M}_{\mathsf{G}})$$

The total space is contractible (shrink the half-disk to its u^{ε} -collar), SO:

$$\Omega \operatorname{Emb}_{\partial^{\varepsilon}}^{\varepsilon}(\mathbb{D}^{k-1},M_G) \xrightarrow[]{\mathfrak{onb}_U} \\ \xrightarrow[]{\mathfrak{fol}_U^{\varepsilon}} \\ \xrightarrow[]{\mathfrak{fol}_U^{\varepsilon}} \\ \end{array} \operatorname{Emb}_{\partial^{\varepsilon}}(\mathbb{Q}^k,M_G)$$

where:



 $\mathsf{K} \colon \mathbb{D}^k \hookrightarrow M, \text{ with } \partial \mathsf{K} = \mathsf{s} \qquad \mathsf{J} \colon \mathsf{O}^k$

J:
$$\mathbb{Q}^k \hookrightarrow M_G := M \cup_{\nu G} h^{d-k+1}$$
, with $\partial J = \mathbf{u}_- \cup \mathbf{u}_+$

Can go back by removing a tubular neighbourhood of u_+ in M_G , and can show

$$\operatorname{Emb}_{\partial^{\varepsilon}}(\mathbb{D}^{k}, M) \simeq \operatorname{Emb}_{\partial^{\varepsilon}}(\mathbb{C}^{k}, M_{G}).$$

Now consider the fibration sequence (due to Cerf):

$$\mathsf{Emb}_{\partial^{\varepsilon}}(\underline{\mathsf{Q}}^{\mathsf{k}},\mathsf{M}_{\mathsf{G}}) \longleftrightarrow \mathsf{Emb}_{\mathbb{D}_{\varepsilon}^{\varepsilon}}(\underline{\mathsf{Q}}^{k},\mathsf{M}_{\mathsf{G}}) \xrightarrow{\mathsf{K} \mapsto \mathsf{K}|_{\mathbb{D}_{\varepsilon}^{\varepsilon}}} \mathsf{Emb}_{\partial^{\varepsilon}}^{\varepsilon}(\underline{\mathbb{D}}^{\mathsf{k-1}},\mathsf{M}_{\mathsf{G}})$$

The total space is contractible (shrink the half-disk to its u^{ε} -collar), SO:

$$\Omega \, \text{Emb}_{\partial^{\varepsilon}}^{\varepsilon}(\underline{\mathbb{D}^{k-1}},M_G) \xrightarrow[]{\mathfrak{cond}_U}{\sim} \text{Emb}_{\partial^{\varepsilon}}(\underline{\mathbb{O}^k},M_G)$$

Where: \mathfrak{amb}_{U} is the connecting map (use the family ambient isotopy theorem to extend loops), $\mathfrak{fol}_{U}^{\varepsilon}(K)$ is the loop of ε -augmented (k - 1)-disks foliating the sphere $-U \cup K$.

LBT for 2-disks in 4-manifolds

The 4D setting with a dual

Let M be an oriented compact smooth 4-manifold together with

- a knot $\mathbf{s} \colon \mathbb{S}^1 \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^2 \hookrightarrow \partial M$,

so that **s** and *G* intersect transversely and positively in a single point. Recall that we study the set of isotopy classes $\text{Emb}_{\partial}[\mathbb{D}^2, M] := \pi_0 \text{Emb}_{\partial}(\mathbb{D}^2, M)$ of neat smooth embeddings $K \colon \mathbb{D}^2 \hookrightarrow M$ which on $\partial \mathbb{D}^2$ agree with **s**.

The 4D setting with a dual

Let M be an oriented compact smooth 4-manifold together with

- a knot $\mathbf{s} \colon \mathbb{S}^1 \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^2 \hookrightarrow \partial M$,

so that **s** and *G* intersect transversely and positively in a single point. Recall that we study the set of isotopy classes $\operatorname{Emb}_{\partial}[\mathbb{D}^2, M] := \pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)$ of neat smooth embeddings $K \colon \mathbb{D}^2 \hookrightarrow M$ which on $\partial \mathbb{D}^2$ agree with **s**.

By Space Level LBT we have $\mathsf{Emb}_{\partial}[\mathbb{D}^2, M] := \pi_1 \mathsf{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_{\nu G} h^3)$ and we can compute the latter group! Moreover, we can interpret the resulting group structure on the original set, as follows.

The 4D setting with a dual

Let M be an oriented compact smooth 4-manifold together with

- a knot $\mathbf{s} \colon \mathbb{S}^1 \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^2 \hookrightarrow \partial M$,

so that **s** and *G* intersect transversely and positively in a single point. Recall that we study the set of isotopy classes $\operatorname{Emb}_{\partial}[\mathbb{D}^2, M] := \pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)$ of neat smooth embeddings $K \colon \mathbb{D}^2 \hookrightarrow M$ which on $\partial \mathbb{D}^2$ agree with **s**.

By Space Level LBT we have $\mathsf{Emb}_{\partial}[\mathbb{D}^2, M] := \pi_1 \mathsf{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_{\nu G} h^3)$ and we can compute the latter group! Moreover, we can interpret the resulting group structure on the original set, as follows.

• Let $m_{-} = \mathbf{s}(-i) \in M$ be the basepoint and denote $\pi = \pi_1(M, m_{-})$,

The 4D setting with a dual

Let M be an oriented compact smooth 4-manifold together with

- a knot $\mathbf{s} \colon \mathbb{S}^1 \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^2 \hookrightarrow \partial M$,

so that **s** and *G* intersect transversely and positively in a single point. Recall that we study the set of isotopy classes $\operatorname{Emb}_{\partial}[\mathbb{D}^2, M] := \pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)$ of neat smooth embeddings $K \colon \mathbb{D}^2 \hookrightarrow M$ which on $\partial \mathbb{D}^2$ agree with **s**.

By Space Level LBT we have $\mathsf{Emb}_{\partial}[\mathbb{D}^2, M] := \pi_1 \mathsf{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_{\nu G} h^3)$ and we can compute the latter group! Moreover, we can interpret the resulting group structure on the original set, as follows.

- Let $m_- = \mathbf{s}(-i) \in M$ be the basepoint and denote $\pi = \pi_1(M, m_-)$,
- Let $\mathbb{Z}[\pi]$ be the group ring, and $\mathbb{Z}[\pi \setminus 1]^{\sigma}$ the subgroup of $\mathbb{Z}[\pi \setminus 1] := \{r = \sum \epsilon_i g_i : g_i \neq 1\}$ of those $\sum \epsilon_i g_i$ that are equal to $\sum \epsilon_i g_i^{-1}$,

The 4D setting with a dual

Let M be an oriented compact smooth 4-manifold together with

- a knot $\mathbf{s} \colon \mathbb{S}^1 \hookrightarrow \partial M$,
- an embedded sphere $G: \mathbb{S}^2 \hookrightarrow \partial M$,

so that **s** and *G* intersect transversely and positively in a single point. Recall that we study the set of isotopy classes $\operatorname{Emb}_{\partial}[\mathbb{D}^2, M] := \pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)$ of neat smooth embeddings $K \colon \mathbb{D}^2 \hookrightarrow M$ which on $\partial \mathbb{D}^2$ agree with **s**.

By Space Level LBT we have $\mathsf{Emb}_{\partial}[\mathbb{D}^2, M] := \pi_1 \mathsf{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_{\nu G} h^3)$ and we can compute the latter group! Moreover, we can interpret the resulting group structure on the original set, as follows.

- Let $m_- = \mathbf{s}(-i) \in M$ be the basepoint and denote $\pi = \pi_1(M, m_-)$,
- Let $\mathbb{Z}[\pi]$ be the group ring, and $\mathbb{Z}[\pi \setminus 1]^{\sigma}$ the subgroup of $\mathbb{Z}[\pi \setminus 1] := \{r = \sum \epsilon_i g_i : g_i \neq 1\}$ of those $\sum \epsilon_i g_i$ that are equal to $\sum \epsilon_i g_i^{-1}$,
- Let dax: $\pi_3 M \to \mathbb{Z}[\pi \setminus 1]^{\sigma}$ be the homomorphism defined in terms of the Dax invariant Dax of the classes of loops of arcs in M_G (...).

Theorem [K-Teichner] There is an exact sequence of sets

$$\mathbb{Z}[\pi \setminus 1]^{\sigma} \underset{\mathsf{Map}_{\partial}[\mathbb{D}^{2}, M]}{\overset{+ \mathsf{fm}(\bullet)^{G}}{\underset{\mathsf{Dax}}{\overset{+ \mathsf{fm}(\bullet)^{G}}{\longrightarrow}}} \mathsf{Emb}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{j} \mathsf{Map}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{\mu_{2}} \mathbb{Z}[\pi \setminus 1]_{\langle r - \overline{r} \rangle}$$

Theorem [K-Teichner] There is an exact sequence of sets

$$\mathbb{Z}[\pi \setminus 1]^{\sigma} \underset{\mathsf{dax}(\pi_{3}M)}{\overset{+ \mathsf{fm}(\bullet)^{6}}{\underset{\mathsf{Dax}}{\overset{\to}{\longrightarrow}}}} \mathsf{Emb}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{j} \mathsf{Map}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{\mu_{2}} \mathbb{Z}[\pi \setminus 1] / \langle r - \bar{r} \rangle$$

- Wall's self-intersection invariant μ_2 is surjective;
- a map $f: \mathbb{D}^2 \to M$, $\partial f = \mathbf{s}$, is homotopic to an embedding iff $\mu_2(f) = 0$;

Theorem [K-Teichner] There is an exact sequence of sets

$$\mathbb{Z}[\pi \setminus 1]^{\sigma} \underset{\mathsf{dax}(\pi_{3}M)}{\overset{+ \mathsf{fm}(\bullet)^{6}}{\underset{\mathsf{Dax}}{\overset{\to}{\longrightarrow}}}} \mathsf{Emb}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{j} \mathsf{Map}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{\mu_{2}} \mathbb{Z}[\pi \setminus 1] / \langle r - \overline{r} \rangle$$

- Wall's self-intersection invariant μ_2 is surjective;
- a map $f: \mathbb{D}^2 \to M$, $\partial f = \mathbf{s}$, is homotopic to an embedding iff $\mu_2(f) = 0$;
- embeddings homotopic to $K: \mathbb{D}^2 \hookrightarrow M$ are obtained from K by the action $+ \operatorname{fm}(r)^G$: do finger moves along r, and then Norman tricks;

Theorem [K-Teichner] There is an exact sequence of sets

$$\mathbb{Z}[\pi \setminus 1]^{\sigma} \underset{\mathsf{Kax}(\pi_{3}M)}{\overset{+ \mathsf{fm}(\bullet)^{6}}{\underset{\mathsf{Dax}}{\overset{\to}{\longrightarrow}}}} \mathsf{Emb}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{j} \mathsf{Map}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{\mu_{2}} \mathbb{Z}[\pi \setminus 1] / \langle r - \bar{r} \rangle$$

- Wall's self-intersection invariant μ_2 is surjective;
- a map $f: \mathbb{D}^2 \to M$, $\partial f = \mathbf{s}$, is homotopic to an embedding iff $\mu_2(f) = 0$;
- embeddings homotopic to $K: \mathbb{D}^2 \hookrightarrow M$ are obtained from K by the action $+ \operatorname{fm}(r)^G$: do finger moves along r, and then Norman tricks;
- $\mathsf{Dax}(-, K): j^{-1}[K] \to \mathbb{Z}[\pi \setminus 1]^{\sigma} / \mathsf{dax}(\pi_3 M)$ is the inverse of this action

Theorem [K-Teichner] There is an exact sequence of sets

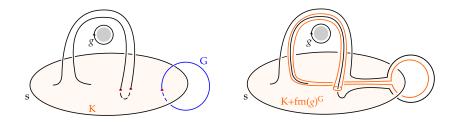
$$\mathbb{Z}[\pi \setminus 1]^{\sigma} \underset{\mathsf{dax}(\pi_{3}M)}{\overset{+ \mathsf{fm}(\bullet)^{6}}{\underset{\mathsf{Dax}}{\overset{\to}{\longrightarrow}}}} \mathsf{Emb}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{j} \mathsf{Map}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{\mu_{2}} \mathbb{Z}[\pi \setminus 1] / \langle r - \bar{r} \rangle$$

- Wall's self-intersection invariant μ_2 is surjective;
- a map $f: \mathbb{D}^2 \to M$, $\partial f = \mathbf{s}$, is homotopic to an embedding iff $\mu_2(f) = 0$;
- embeddings homotopic to $K: \mathbb{D}^2 \hookrightarrow M$ are obtained from K by the action $+ \operatorname{fm}(r)^G$: do finger moves along r, and then Norman tricks;
- $\mathsf{Dax}(-, K): j^{-1}[K] \to \mathbb{Z}[\pi \setminus 1]^{\sigma} / \mathsf{dax}(\pi_3 M)$ is the inverse of this action
- ↔ the relative Dax invariant, given by a clever count of double point loops in a homotopy to K, detects the action:

$$\mathsf{Dax}(K + \mathsf{fm}(r)^G, K) = [r].$$

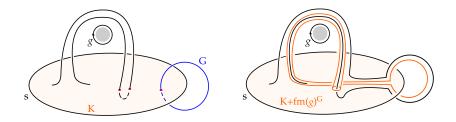
Theorem [K-Teichner] There is an exact sequence of groups

$$\mathbb{Z}[\pi \setminus 1]^{\sigma} \operatorname{\mathsf{dax}}(\pi_3 M) \xrightarrow{+ \operatorname{\mathsf{fm}}(\bullet)^6}_{\operatorname{\mathsf{Dax}}} \operatorname{\mathsf{Emb}}_{\partial}[\mathbb{D}^2, M] \xrightarrow{j} \operatorname{\mathsf{Map}}_{\partial}[\mathbb{D}^2, M] \xrightarrow{\mu_2} \mathbb{Z}[\pi \setminus 1] \operatorname{\mathsf{dax}}(r - \overline{r})$$



Theorem [K-Teichner] There is an exact sequence of groups

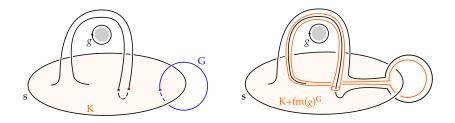
$$\mathbb{Z}[\pi \setminus 1]^{\sigma} \operatorname{\mathsf{dax}}(\pi_{3}M) \xrightarrow{+ \operatorname{\mathsf{fm}}(\bullet)^{\circ}}_{\operatorname{\mathsf{Dax}}} \operatorname{\mathsf{Emb}}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{j} \operatorname{\mathsf{Map}}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{\mu_{2}} \mathbb{Z}[\pi \setminus 1] \operatorname{\mathsf{cp}}_{\langle r - \overline{r} \rangle}$$



- A similar construction by Gabai ('21).

Theorem [K-Teichner] There is an exact sequence of groups

$$\mathbb{Z}[\pi \setminus 1]^{\sigma} \underset{\mathsf{dax}(\pi_{3}M)}{\overset{+ \mathsf{fm}(\bullet)^{\circ}}{\underset{\mathsf{Dax}}{\overset{+ \mathsf{cm}(\bullet)^{\circ}}{\longrightarrow}}}} \mathsf{Emb}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{j} \mathsf{Map}_{\partial}[\mathbb{D}^{2}, M] \xrightarrow{\mu_{2}} \mathbb{Z}[\pi \setminus 1] / \langle r - \overline{r} \rangle$$



- A similar construction by Gabai ('21).
- We recover LBT for spheres of Gabai ('20) and Schneiderman-Teichner ('21).

Thank you!