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Spaces of embeddings

- Fix1 < kR <d. Let M be a compact smooth d-dimensional manifold and
s: S < M a smooth embedding. Recall that this means that s is
injective, and at any x € S*~" the derivative dsy is injective.

- We consider the space
Emba(D*, M) := {K: D* < M | K is a neat smooth embedding, K|,px = s}
where neat means transverse to @M and K(D*) N dM = K(dD*) = s.

- For example, fork =1,d = 3:

M

- Setting with a dual: If there exists G: S¢~* < OM, such that G has trivial
normal bundle and G h s = {pt}. Like in the example on the right!
We also assume Embg(D*, M) is nonempty, and fix a basepoint U.
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In low dimensional topology...

... one studies codimension two embeddings, where “knotting” occurs.

- For example, (classical) knot theory studies the set of isotopy classes
70 Emba (S', R?). (This is in fact in bijection with o Emba (D', D?).)

- More recently, intensively studied is the set of 2-knots o Emby(ID?, M) for
a 4-manifold M. This can be huge - for example, “spinning” a classical
knot gives a 2-knot in mo Emby(S?, R*) 2 mo Emby(D?, D*).

- A sample open problem: Is there a nontrivial 2-knot S* < R* which is
trivial locally flatly?

- In this talk: we shall compute o Emba (D%, M) in the setting with a dual!

- Although usually only the sets of components are considered, we will see
that higher homotopy groups of embedding spaces are also useful.
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Theorem [K-Teichner]
In the setting with a dual, if we denote Mg := M U, h® "' then there is an
explicit pair of homotopy equivalences

‘[015

Embs(D*, M) —== QEmbj(D*~", Mo).

ambU

- Here Embg(ID*~", Mg) with the boundary condition given by ug := du, and Q
denotes the space of loops based at uy := s hd=k,

- Supscript e means each embedded disk is equipped with a “push-off”(

This recovers the classical LBT: isotopy classes of arcs in a 3-manifold M with
ends on two components of M, one of which is §?, are in bijection with
m1(MUg h?). = a knot in the chord for a light bulb can be unknotted!

Example: k=1,d =3
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R =1: Embs(D',M) ~ QS"™" x Q(M Ug h?)

d =2 : thisis “point-pushing”: isotopy classes of arcs in a surface
M, with ends fixed on two components of OM, are in
bijection with Z & m(M Us h?).

R =2: Embg(D?, M) ~ QEmbg (D', M Us h%~7).
d =4 : Emba[D?, M] = m Embg (D', M Ug h*).
kR =3: m Emba(D?,S" x D) 2 71 Emby(D?, D*), cf. Budney-Gabai.
k = d : Recovers a theorem (and proof) of Cerf'68:
Diff} (DY) = Embs (DY, DY) ~ Q Emby(D?~", DY).
In particular, mo Diff ) (D*) 2 m(Emby(D?, D*); U). Open: is this nontrivial?
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=]

K: DF < M, with 9K = s J:@F < Mg := MU,g h? ™" with ) = u_Uu.

Can go back by removing a tubular neighbourhood of u; in Mg, and can show

Embge (¥, M) ~ Embg= (0, Mg). J

Now consider the fibration sequence (due to Cerf):

K—K|pe
Embge (0%, Mg) ——— Embpe (0%, Mg) ——— Embj (D", Mg)

The total space is contractible (shrink the half-disk to its u® -collar), SO:

amby
QEmb5: (D", Mg) = Embyp: (0", Mq) J

folgy

where: amby is the connecting map (use the family ambient isotopy theorem to extend loops),

folg(K) is the loop of e-augmented (k — 1)-disks foliating the sphere —U U K. O
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Let M be an oriented compact smooth 4-manifold together with
- aknots: S — aMm,
- an embedded sphere G: §? < M,

so that s and G intersect transversely and positively in a single point. Recall
that we study the set of isotopy classes Embg[D?, M] := o Emby(D?*, M) of
neat smooth embeddings K: D’ < M which on dD? agree with s.

By Space Level LBT we have Emby[D?, M] := m Emb§ (D', M U, h*) and we can
compute the latter group! Moreover, we can interpret the resulting group
structure on the original set, as follows.

- Let m_ = s(—i) € M be the basepoint and denote 7 = m(M, m_),

- Let Z[r] be the group ring, and Z[x\ 1]? the subgroup of
ZIm\1] :={r=>_¢€gi: gi # 1} of those ) ¢g; that are equal to Ze,gﬂ,

- Let dax: mM — Z[x\1]? be the homomorphism defined in terms of the
Dax invariant Dax of the classes of loops of arcs in Mg (...).
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Theorem [K-Teichner] There is an exact sequence of sets

+fm(-)G
Z[r\1]° Vdax(mM) Embo[D?%, M] —— Map,[D?, M] —2» ZIT\T], ir =

In detail:
- Wall's self-intersection invariant p; is surjective,
- amap f: D* = M, of = s, is homotopic to an embedding iff u(f) = 0;

- embeddings homotopic to K: D’ < M are obtained from K by the action
+fm(r)6: do finger moves along r, and then Norman tricks;

- Dax(—,K): j7'[K] = Z[W\”J/dax(m/\/l) is the inverse of this action

<= the relative Dax invariant, given by a clever count of double point loops in
a homotopy to K, detects the action:

Dax(K + fm(r)%, K) = [r].
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Theorem [K-Teichner] There is an exact sequence of groups

£ fm(e)?

Z[m\)° /dax(7r3/\/|) -z Embs[D?,M] —— Map,[D?,M] — Z[7r\1] < =)

- A similar construction by Gabai ('21).
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Theorem [K-Teichner] There is an exact sequence of groups

£ fm(e)?

Al /dax(7r3M) == Emby[D?, M] — Map,[D*, M] — Z[W\”

“r=T)

- A similar construction by Gabai ('21).

- We recover LBT for spheres of Gabai ('20) and Schneiderman-Teichner ('21).



Thank you!
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