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One fundamental question: Describe all long knots up to isotopy.

Another one: Describe all 2-knots in a 4-manifold up to isotopy.
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An isotopy:

In knot theory we consider the set

K = { ((ot\j\ Knou§/

nJ

Is there an additional structure on this set?
What patterns do we see?
What are some interesting subsets?

One classical idea:

Assign each (long) knot the smallest
genus of a surface bounded by it.

3(K\ =1




Another idea:

Instead of surfaces consider
their iterations: gropes.

Instead of genus (length),
measure the degree (height).
First appeared in 4-manifold topology...
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Another isotopy: Another idea:

Instead of surfaces consider
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_ A : First appeared in 4-manifold topology...
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Does not exist for this knot.
That is, K is not 3-equivalent
to the unknot U.
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This refines the relation of isotopy ~ to a
sequence of relations ~, forn=1,2,3...

Theorem [Conant-Teichner 2004]

Two knots are n-equivalent <=> they are not distinguished by
any Vassiliev invariant of degree =n.

Conjecture K~aU VWinz=4 = KU

Equivalently, Vassiliev invariants detect the unknot.

Theorem [Gusarov 2000, Habiro 2000, Conant-Teichner 2004]

K/m,. is a finitely generated abelian group.

Question Are there any torsion elements in K/ ?
Ny
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Main results (for each n=1):

Theorem A. T2V, is surjective.

Theorem D. [joint with Peter Teichner and Yuging Shi]
KenK = men(K) = mev, (K)

Moreover, each grope gives a point in the layer T, .

This reproves .
Budney-Conant- Corollaries of Theorem E.

Koytcheff-Sinha BCSS Conjecture is true:

2017 1) over Q.
2) over Z, in a range (for n < p+2).
3) for n<7.
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The actual main result: Theorem E.
“The underlying tree of a grope

Remarks: is detected in the tower.”

1) This is analogous to the works of Kontsevich, Bott-Taubes,
Koschorke, Watanabe...

2) Corollaries use the work [Boavida de Brito-Horel 2019].

3) All other results apply to long knots in any 3-manifold.

4) As a consequence we obtain Goodwillie-Klein [2015] estimates
for the connectivity of €V, in some missing cases:

wo: Gub, (L, M) —— B, (L.M)
i ( dimM + (V\H\(dlml\/\ dimL — 2\\ Covmeted
oo for (=T oaud dimM=23.



5) We actually obtain the results regarding the embedding
calculus for long knots in any d-dimensional manifold M.



5) We actually obtain the results regarding the embedding
calculus for long knots in any d-dimensional manifold M.

Theorem C. \:“ (M\ is (n-1)(d-3)-1 -connected and there is an
explicit isomorphism
(n-1)

M

Wln-«\(a-s\\:“('\/\\ r . Lie1r



5) We actually obtain the results regarding the embedding
calculus for long knots in any d-dimensional manifold M.

Theorem C. \:“ (M\ is (n-1)(d-3)-1 -connected and there is an

explicit isomorphism
TTin-n d-3) Fv\ (M\ 76 - Lie“_M(“-'\\ .
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