~ A geometric approach to the embedding calculus ~ Dounica Kosanović

Zodpogouru! Willkommen! Welcome!

<u>25.9.2020</u>

Bonn (virtually)

a knot

a long knot

a knot

a surface with boundary

a closed surface

a 3-manifold with boundary

a surface with boundary

One fundamental question: Describe all long knots up to isotopy. Another one: Describe all 2-knots in a 4-manifold up to isotopy.

An isotopy:

K

In knot theory we consider the set

 $K := \left\{ (long) \text{ knots} \right\}_{\sim}$

 $K \simeq K'$

An isotopy:

K isotopy K

K'

K ≃

In knot theory we consider the set

$$K := \{(long) \text{ knots}\}_{\sim}$$

Is there an additional structure on this set? What patterns do we see? What are some interesting subsets? An isotopy:

In knot theory we consider the set

$$K := \left\{ (long) \text{ knots} \right\}_{\sim}$$

Is there an additional structure on this set? What patterns do we see? What are some interesting subsets?

One classical idea:

Assign each (long) knot the smallest genus of a surface bounded by it.

abstractly:

Another idea: Instead of surfaces consider

their iterations: gropes.

Instead of genus (length), measure the degree (height). First appeared in 4-manifold topology... Another isotopy:

Another idea:

Instead of surfaces consider their iterations: **gropes.**

Instead of genus (length), measure the degree (height). First appeared in 4-manifold topology...

Another isotopy:

Instead of surfaces consider their iterations: **gropes.**

Instead of genus (length), measure the degree (height). First appeared in 4-manifold topology...

Two knots are **n-equivalent** if there exists a capped grope cobordism of degree n between them.

Another isotopy:

Instead of surfaces consider their iterations: **gropes.**

Instead of genus (length), measure the degree (height). First appeared in 4-manifold topology...

Two knots are **n-equivalent** if there exists a capped grope cobordism of degree n between them.

Does not exist for this knot. That is, K is **not** 3-equivalent to the unknot U.

Theorem [Conant-Teichner 2004]

Two knots are **n-equivalent** \iff they are not distinguished by any Vassiliev invariant of degree $\leq n$.

Theorem [Conant-Teichner 2004]

Two knots are **n-equivalent** \iff they are not distinguished by any Vassiliev invariant of degree $\leq n$.

Conjecture $K \sim_n U \forall n \ge 1 \implies K \simeq U$

Equivalently, Vassiliev invariants detect the unknot.

Theorem [Conant-Teichner 2004]

Two knots are **n-equivalent** \iff they are not distinguished by any Vassiliev invariant of degree $\leq n$.

Conjecture $K \sim_n U \forall n \ge 1 \implies K \simeq U$

Equivalently, Vassiliev invariants detect the unknot.

Theorem [Gusarov 2000, Habiro 2000, Conant-Teichner 2004]

 \mathbb{K}_{\sim_n} is a finitely generated abelian group.

Theorem [Conant-Teichner 2004]

Two knots are **n-equivalent** \iff they are not distinguished by any Vassiliev invariant of degree $\leq n$.

Conjecture $K \sim_n U \quad \forall n \ge 1 \implies K \simeq U$ Equivalently, Vassiliev invariants detect the unknot.

Theorem [Gusarov 2000, Habiro 2000, Conant-Teichner 2004]

is a finitely generated abelian group.

Question Are there any torsion elements in \mathbb{K}_{\sim_n} ?

For each $n \ge 1$ there is an isomorphism of groups:

$$\pi_{o}ev_{n}: \mathbb{K}_{n} \longrightarrow \pi_{o}P_{n}$$

For each $n \ge 1$ there is an isomorphism of groups:

$$\pi_{o}ev_{n}: \mathbb{K}_{n} \longrightarrow \pi_{o}P_{n}$$

That is:

1) $T_0 ev_n$ is surjective.

2)
$$\mathbf{K} \sim_{\mathbf{n}} \mathbf{K}' \iff \pi_{\mathbf{o}} \mathrm{ev}_{\mathbf{n}}(\mathbf{K}) = \pi_{\mathbf{o}} \mathrm{ev}_{\mathbf{n}}(\mathbf{K}')$$

For each $n \ge 1$ there is an isomorphism of groups:

$$\pi_{o}ev_{n}: \mathbb{K}_{n} \longrightarrow \pi_{o}P_{n}$$

That is: 1) $\pi_0 e_n$ is surjective. 2) $K \sim_n K' \iff \pi_0 e_n(K) = \pi_0 e_n(K')$

Can be restated as:

$$\mathcal{T}_{o}\mathcal{W}_{n}$$
 is a universal
additive Vassiliev invariant
of degree $\leq n-1$.

For each n≥1 there is an isomorphism of groups:

 $\pi_{o}ev_{n}: \mathbb{K}_{n} \longrightarrow \pi_{o}P_{n}$

That is: 1) $\mathcal{T}_{o}e\mathcal{V}_{n}$ is surjective. 2) $\mathbb{K} \sim_{n} \mathbb{K}' \iff \mathcal{T}_{o}e\mathcal{V}_{n}(\mathbb{K}) = \mathcal{T}_{o}e\mathcal{V}_{n}(\mathbb{K}')$

Goodwillie-Weiss embedding calculus is a technique from algebraic topology. It gives a tower of invariants:

Can be restated as: $T_0 e_n$ is a universal additive Vassiliev invariant of degree $\leq n-1$.

For each $n \ge 1$ there is an isomorphism of groups:

 $\pi_{o}ev_{n}: \mathbb{K}_{n} \longrightarrow \pi_{o}P_{n}$

That is: 1) $\mathcal{T}_{o}e\mathcal{U}_{n}$ is surjective. 2) $\mathbf{K} \sim_{n} \mathbf{K}' \iff \mathcal{T}_{o}e\mathcal{U}_{n}(\mathbf{K}) = \mathcal{T}_{o}e\mathcal{U}_{n}(\mathbf{K}')$

Goodwillie-Weiss embedding calculus is a technique from algebraic topology. It gives a tower of invariants:

Theorem A. $T_0 ev_n$ is surjective.

Theorem A. $T_0 ev_n$ is surjective.

Theorem D. [joint with Peter Teichner and Yuqing Shi] $K \sim_n K' \implies \pi_o ev_n(K) = \pi_o ev_n(K')$ Moreover, each grope gives a point in the layer F_n .

Theorem A. $T_0 ev_n$ is surjective.

Theorem D. [joint with Peter Teichner and Yuqing Shi] $K \sim_n K' \implies \pi_0 ev_n(K) = \pi_0 ev_n(K')$

Moreover, each grope gives a point in the layer F_n .

This reproves Budney-Conant-Koytcheff-Sinha 2017

Theorem A. $T_0 ev_n$ is surjective.

Theorem D. [joint with Peter Teichner and Yuqing Shi] $K \sim_n K' \implies \pi_0 ev_n(K) = \pi_0 ev_n(K')$ Moreover, each grope gives a point in the layer F_n .

This reproves Budney-Conant-Koytcheff-Sinha 2017

Corollaries of Theorem E.
BCSS Conjecture is true:
1) over Q.
2) over Z_p in a range (for n ≤ p+2).
3) for n≤7.

Theorem E.

"The underlying tree of a grope is detected in the tower."

Theorem E.

"The underlying tree of a grope is detected in the tower."

Remarks:

1) This is analogous to the works of Kontsevich, Bott-Taubes, Koschorke, Watanabe...

Theorem E.

"The underlying tree of a grope is detected in the tower."

Remarks:

1) This is analogous to the works of Kontsevich, Bott-Taubes, Koschorke, Watanabe...

2) Corollaries use the work [Boavida de Brito-Horel 2019].

3) All other results apply to long knots in any 3-manifold.

Theorem E.

"The underlying tree of a grope is detected in the tower."

Remarks:

1) This is analogous to the works of Kontsevich, Bott-Taubes, Koschorke, Watanabe...

2) Corollaries use the work [Boavida de Brito-Horel 2019].

3) All other results apply to long knots in any 3-manifold.

4) As a consequence we obtain Goodwillie-Klein [2015] estimates for the connectivity of \mathfrak{W}_n in some missing cases:

Theorem E.

"The underlying tree of a grope is detected in the tower."

Remarks:

1) This is analogous to the works of Kontsevich, Bott-Taubes, Koschorke, Watanabe...

2) Corollaries use the work [Boavida de Brito-Horel 2019].

3) All other results apply to long knots in any 3-manifold.

4) As a consequence we obtain Goodwillie-Klein [2015] estimates for the connectivity of \mathfrak{W}_n in some missing cases:

$$\begin{aligned} & ev_n \colon \mathcal{E}uub_2(L,M) \longrightarrow \mathcal{P}_n(L,M) \\ & \text{is } \left(3 - \dim M + (n+1) \left(\dim M - \dim L - 2 \right) \right) - connected \\ & also for \ L = I \quad aud \quad \dim M = 3. \end{aligned}$$

5) We actually obtain the results regarding the embedding calculus for long knots in **any d-dimensional manifold M.**

5) We actually obtain the results regarding the embedding calculus for long knots in any d-dimensional manifold M.

Theorem C. $F_n(M)$ is (n-1)(d-3)-1 -connected and there is an explicit isomorphism J

$$T_{(n-1)(d-3)}F_{n}(M) \xrightarrow{\gamma} Lie_{\pi,M}(n-1)$$

5) We actually obtain the results regarding the embedding calculus for long knots in **any d-dimensional manifold M.**

Theorem C. $F_n(M)$ is (n-1)(d-3)-1 -connected and there is an explicit isomorphism $\pi_{(n-1)(d-3)}F_n(M) \xrightarrow{\gamma} Lie_{\pi,M}(n-1)$.

> certain ab. group of decorated trees.

MPIM Bonn 2019

