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Some objects of interest in GEOMETRIC TOPOLOGY

Another one: Describe all 2-knots in a 4-manifold up to isotopy.

One fundamental question: Describe all long knots up to isotopy.
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An isotopy: In knot theory we consider the set

Is there an additional structure on this set?
What patterns do we see?
What are some interesting subsets?
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One classical idea:
Assign each (long) knot the smallest 
genus of a surface bounded by it.

An isotopy: In knot theory we consider the set

Is there an additional structure on this set?
What patterns do we see?
What are some interesting subsets?
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Instead of surfaces consider 
their iterations: gropes.

Another idea:

Instead of genus (length),
measure the degree (height).
First appeared in 4-manifold topology...
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Instead of surfaces consider 
their iterations: gropes.

Two knots are n-equivalent if there exists 
a capped grope cobordism of degree n
between them.

Another idea:Another isotopy:

Instead of genus (length),
measure the degree (height).
First appeared in 4-manifold topology...
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Instead of surfaces consider 
their iterations: gropes.

Two knots are n-equivalent if there exists 
a capped grope cobordism of degree n
between them.

Another idea:Another isotopy:

Instead of genus (length),
measure the degree (height).
First appeared in 4-manifold topology...
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Does not exist for this knot. 
That is,     is not 3-equivalent 
to the unknot     .
"
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This refines the relation of isotopy        to a 
sequence of relations         for n=1,2,3...
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This refines the relation of isotopy        to a 
sequence of relations         for n=1,2,3...

Theorem [Conant-Teichner 2004] 
Two knots are n-equivalent          they are not distinguished by 
any Vassiliev invariant of degree ≤n.
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This refines the relation of isotopy        to a 
sequence of relations         for n=1,2,3...

Theorem [Conant-Teichner 2004] 
Two knots are n-equivalent          they are not distinguished by 
any Vassiliev invariant of degree ≤n.

Conjecture

Theorem [Gusarov 2000, Habiro 2000, Conant-Teichner 2004]
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This refines the relation of isotopy        to a 
sequence of relations         for n=1,2,3...

Theorem [Conant-Teichner 2004] 
Two knots are n-equivalent          they are not distinguished by 
any Vassiliev invariant of degree ≤n.

Conjecture

Question     Are there any torsion elements in              ?

Theorem [Gusarov 2000, Habiro 2000, Conant-Teichner 2004]
             

        is a finitely generated abelian group.

5
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Conjecture [Budney-Conant-Scannell-Sinha 2005]
For each n≥1 there is 
an isomorphism of groups:
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Can be restated as:
            is a universal 
additive Vassiliev invariant 
of degree ≤n-1.
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Goodwillie-Weiss 
embedding calculus 
is a technique from 
algebraic topology.
It gives a tower 
of invariants:
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Goodwillie-Weiss 
embedding calculus 
is a technique from 
algebraic topology.
It gives a tower 
of invariants:

Conjecture [Budney-Conant-Scannell-Sinha 2005]
For each n≥1 there is 
an isomorphism of groups:
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Main results  (for each n≥1):
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Main results  (for each n≥1):

Theorem A.            is surjective.
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Theorem D. [joint with Peter Teichner and Yuqing Shi] 

Corollaries of Theorem E. 
BCSS Conjecture is true:

1) over Q.  
2) over Z   in a range (for n ≤ p+2).
3) for n≤7. 

Moreover, each grope gives a point in the layer

This reproves 
Budney-Conant-
Koytcheff-Sinha 
2017Toev@qknntitstoevnlk-Toevnk.io
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