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Consider the ring of Laurent polynomials R := Z[t±1], equipped with the involution p(t) = p(t−1). Let

A =

(
a(t) c(t)
c(t) b(t)

)
be a Hermitian matrix over R.

a) Construct a compact, oriented 4-manifold M ' S1 ∨ S2 ∨ S2, whose intersection form λM is in

some basis given precisely by A.

b) Show that up to units t±n, det(A) can be read off from ∂M and that π1(∂M) // // Z .

Solution 6.1. Recall that A Hermitian means that A = AT, so we have a(t) = a(t−1) and b(t) = b(t−1).

Therefore, we can write

a(t) = ∑
n∈Z

kntn = k0 + ∑
n≥1

kn(tn + t−n) (1)

for some coefficients kn ∈ Z.

a) The goal is to construct the 4-manifold ML analogously to what we did in the class for a two-

component link L (see Class 9), but now with a three-component link instead. We can start with

the unlink L = (L1, L2, L3) : t3S1 ↪→ S3 bounding disjoint undisks ( f1, f2, f3) : t3D2 ↪→ D4 and

modify L1 and L2 in the complement of L3 using certain finger moves that we determine later.

Then we take out a tubular neighbourhood of f3 and attach two 2-handles to L1 and L2 (with

framings which we also have to choose1), so that we get a 4-manifold:

ML := (D4 \ ν f3) ∪L f
1 r

D2 ×D2 ∪
L f

2 r
D2 ×D2

In order to determine what modifications to make, let us first see how they will relate with the

intersection form of ML.

1 See Class 16 for an introduction to Kirby calculus.
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Since both 2-handles are attached to loops that are null-homotopic in the complement of the

undisk, ML is homotopy equivalent to the wedge S1 ∨ S2 ∨ S2 (independently of what modifica-

tions we choose). We know that π2 of this wedge is a free R-module on two generators. Therefore,

we can (either by understanding this homotopy equivalence or by knowing a bit of Kirby calcu-

lus) calculate:

π2(ML) = π2(M̃L) = H2(M̃L) ∼= R〈S̃1, S̃2〉

where π1(ML) ∼= Z is generated by the meridian t to the undisk f3. We can represent the gener-

ator S1 by an immersed sphere built from the immersed disk for L1 (obtained from the undisk f1

by the modifications) glued along L1 to the core of the corresponding 2-handle; for S2 we do the

same using the modified undisk f2 and capping it off by the core of the other 2-handle. Those

two spheres together with some whiskers to the basepoint are denoted S̃1 and S̃2.

The intersection matrix is in this basis given by λij := λM(S̃i, S̃j), for 1 ≤ i, j ≤ 2. Thus, it only

remains to choose modifications of the unlink, so that starting from (λij) we get to the matrix A.

Recall the formula to calculate intersections of a sphere with its parallel push-off (see Class 6):

λM(S̃i, S̃i) = µ(S̃i) + µ(S̃i) + e(νS̃i)

So to obtain λ11 = a(t) of the form as in (1), we will do for each n ≥ 1 precisely kn self-finger

moves on L1 in the complement of f3, following a guiding arc which describes n full twists around

f3. This will contribute the term kntn to µ and knt−n to µ. Finally, to get the element k0 we just

change the Euler number e(νS̃a) - this is easy since we can choose the framing for the attachment

of the handle and this is equal to the Euler number of the normal bundle of the sphere S1.

Everything is absolutely analogous for λ22 = b(t), by modifying the component L2. Now for

λ12 = λ21 we do the finger moves between components L1 and L2, again using guiding arcs

which go necessary number of times around the meridian t of f3.

b) For the surjection π1(∂M) → π1(M) ∼= Z〈t〉, observe that the meridian t to f3 actually lives in

the boundary of M.

Recall that the (equivariant) intersection form λM can be defined as the intersection form on the

universal cover M̃, or equivalently as a form on H2(M̃) ∼= H2(M; R), the homology of M with

local coefficients in R. The homology long exact sequence for (M, ∂M) with R coefficients gives:

H2(M; R)
ι∗

// H2(M, ∂M; R)
δ

//

j◦PD ∼=
��

H1(∂M; R) // H1(M; R)

∼=
��

H2(M; R)
Φ

// Hom(H2(M; R), R)
δ◦(j◦PD)−1

// H1(∂M; R) // 0

(2)

Here we used the Poincaré duality isomorphism PD : H2(M, ∂M; R) → H2(M; R) and a variant

of the universal coefficients theorem2 for cohomology:

0→ Ext1
R(H1(M; R), R)→ H2(M; R)

j−→ Hom(H2(M; R), R)→ 0

2Note that when R is not a PID the usual universal coefficient theorem for cohomology does not apply. However, there is

a universal coefficent spectral sequence Ep,q
2 = Extq

R(Hp(M; R), R) =⇒ H∗(M; R). For ∗ = 2 we actually do get a short exact

sequence as stated.
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where the first term is zero since H1(M; R) ∼= H1(M̃) ∼= 0, so j is an isomorphism. Note that

H2(M; R) = H2(M̃) ∼= R〈S̃1, S̃2〉

Hom(H2(M; R), R) ∼= R〈α1, α2〉

where we define αi as the dual basis: αi(S̃j) = δij.

We now claim that the homomorphism Φ = j ◦ PD ◦ ι∗ in the lower row of (2) is given precisely

by the intersection matrix λM = A. This will imply3 that H1(∂M; R) is the cokernel of Φ, hence it

determines the determinant of A.

Write Φ(S̃i) = di1α1 + di2α2 for some coefficients dij ∈ R and calculate:

dij = Φ(S̃i)(S̃j) = j ◦ PD(ι∗S̃i)(S̃j) = (ι∗S̃i) · S̃j = λij

proving the claim (for the last equality, recall the correspondence of intersection and cup prod-

ucts: PD(ι∗S̃i) _ S̃j = (ι∗S̃i) · S̃j).

�

3 Actually, we can say more: the generators of H1(∂M; R) are represented by δ ◦ (j ◦ PD)−1(αi) = δ(Ci) where Ci is the

cocore of the handle attached to Li.
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